The lack of standardization is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations due to differences in hardware and acquisition parameters. In recent years, MR harmonization using image synthesis with disentanglement has been proposed to compensate for the undesired contrast variations. Despite the success of existing methods, we argue that three major improvements can be made. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both Tw-weighted and T2-weighted images must be available), which limits their applicability. Third, existing methods generally are sensitive to imaging artifacts. In this paper, we present a novel approach, Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), to address these three issues. We first propose an anatomy fusion module that enables HACA3 to respect the anatomical differences between MR contrasts. HACA3 is also robust to imaging artifacts and can be trained and applied to any set of MR contrasts. Experiments show that HACA3 achieves state-of-the-art performance under multiple image quality metrics. We also demonstrate the applicability of HACA3 on downstream tasks with diverse MR datasets acquired from 21 sites with different field strengths, scanner platforms, and acquisition protocols.
translated by 谷歌翻译
在2D多板磁共振(MR)采集中,平面信号通常比面内信号较低。尽管当代超分辨率(SR)方法旨在恢复基本的高分辨率量,但估计的高频信息是通过端到端数据驱动的培训隐含的,而不是明确说明和寻求。为了解决这个问题,我们根据完美的重建过滤库重新构架SR问题声明,使我们能够识别并直接估计缺失的信息。在这项工作中,我们提出了一种两阶段的方法,以近似于与特定扫描的各向异性采集相对应的完美重建过滤库。在第1阶段,我们使用梯度下降估算缺失的过滤器,在第2阶段,我们使用深网来学习从粗系数到细节系数的映射。此外,提出的公式不依赖外部训练数据,从而规避了对域移位校正的需求。在我们的方法下,特别是在“切片差距”方案中提高了SR性能,这可能是由于框架施加的解决方案空间的限制。
translated by 谷歌翻译
在许多低到中型收入(LMIC)国家中,超声用于评估胸腔积液。通常,积液的程度是由超声检查员手动测量的,导致明显的内部/观察者间变异性。在这项工作中,我们研究了深度学习(DL)以自动化超声图像中胸腔积液分割的过程。在在LMIC设置中获得的两个数据集上,我们使用NNU-NET DL模型获得了中位骰子相似性系数(DSC)为0.82和0.74。我们还研究了DL模型中坐标卷积的使用,发现这会导致第一个数据集的中间DSC在0.85上的统计学显着改善,而第二个数据集则没有显着更改。这项工作首次展示了DL在LMIC环境中超声评估的过程中自动化的潜力,在LMIC环境中,通常缺乏经验丰富的放射科医生来执行此类任务。
translated by 谷歌翻译
大多数基于深度学习(DL)的可变形图像登记方法使用卷积神经网络(CNN)来估计移动和固定图像对的位移字段。但是,这要求CNN中的卷积内核不仅从输入中提取强度特征,而且还了解图像坐标系。我们认为,后者的任务对传统CNN来说是具有挑战性的,从而限制了他们在注册任务中的性能。为了解决此问题,我们首先介绍坐标翻译器,坐标转换器是一个可区分的模块,该模块识别固定和移动图像之间的匹配功能,并在不需要训练的情况下输出其坐标对应关系。它卸载了了解CNN的图像坐标系的负担,从而使它们可以专注于特征提取。然后,我们提出了一个新型的可变形注册网络IM2Grid,该网络使用多个坐标转换器与从CNN编码中提取的层次结构特征,并以粗略的方式输出变形字段。我们将IM2Grid与无监督的3D磁共振图像注册的最新DL和非DL方法进行了比较。我们的实验表明,IM2Grid在定性和定量上都优于这些方法。
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
Despite the recent progress in language generation models, their outputs may not always meet user expectations. In this work, we study whether informational feedback in natural language can be leveraged to improve generation quality and user preference alignment. To this end, we consider factual consistency in summarization, the quality that the summary should only contain information supported by the input documents, for user preference alignment. We collect a high-quality dataset, DeFacto, containing human demonstrations and informational feedback in natural language consisting of corrective instructions, edited summaries, and explanations with respect to the factual consistency of the summary. Using our dataset, we study two natural language generation tasks: 1) editing a summary using the human feedback, and 2) generating human feedback from the original summary. Using the two tasks, we further evaluate if models can automatically correct factual inconsistencies in generated summaries. We show that the human-edited summaries we collected are more factually consistent, and pre-trained language models can leverage our dataset to improve the factual consistency of original system-generated summaries in our proposed generation tasks. We make the DeFacto dataset publicly available at https://github.com/microsoft/DeFacto.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Free-text rationales (FTRs) follow how humans communicate by explaining reasoning processes via natural language. A number of recent works have studied how to improve language model (LM) generalization by using FTRs to teach LMs the correct reasoning processes behind correct task outputs. These prior works aim to learn from FTRs by appending them to the LM input or target output, but this may introduce an input distribution shift or conflict with the task objective, respectively. We propose KNIFE, which distills FTR knowledge from an FTR-augmented teacher LM (takes both task input and FTR) to a student LM (takes only task input), which is used for inference. Crucially, the teacher LM's forward computation has a bottleneck stage in which all of its FTR states are masked out, which pushes knowledge from the FTR states into the task input/output states. Then, FTR knowledge is distilled to the student LM by training its task input/output states to align with the teacher LM's. On two question answering datasets, we show that KNIFE significantly outperforms existing FTR learning methods, in both fully-supervised and low-resource settings.
translated by 谷歌翻译
As information extraction (IE) systems have grown more capable at whole-document extraction, the classic task of \emph{template filling} has seen renewed interest as a benchmark for evaluating them. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of \emph{event individuation} -- the problem of distinguishing distinct events -- about which even human experts disagree. We show through annotation studies and error analysis that this raises concerns about the usefulness of template filling evaluation metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.
translated by 谷歌翻译
Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Most targeted syntactic evaluation datasets ask models to make these judgements with just a single context-free sentence as input. This does not match language models' training regime, in which input sentences are always highly contextualized by the surrounding corpus. This mismatch raises an important question: how robust are models' syntactic judgements in different contexts? In this paper, we investigate the stability of language models' performance on targeted syntactic evaluations as we vary properties of the input context: the length of the context, the types of syntactic phenomena it contains, and whether or not there are violations of grammaticality. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts. However, they are substantially unstable for contexts containing syntactic structures matching those in the critical test content. Among all tested models (GPT-2 and five variants of OPT), we significantly improve models' judgements by providing contexts with matching syntactic structures, and conversely significantly worsen them using unacceptable contexts with matching but violated syntactic structures. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by simple features matching the context and the test inputs, such as lexical overlap and dependency overlap. This sensitivity to highly specific syntactic features of the context can only be explained by the models' implicit in-context learning abilities.
translated by 谷歌翻译